Simplified Procedure to Evaluate Earthquake-induced Residual Displacement of Geosynthetic Reinforced Soil Retaining Walls
نویسندگان
چکیده
Based on a series of shaking table model tests, it was found that the eŠects of 1) subsoil and backˆll deformation, 2) failure plane formation in backˆll, and 3) pullout resistance mobilized by the reinforcements on the seismic behaviors of the geosynthetic reinforced soil retaining walls (GRS walls) were signiˆcant. These eŠects cannot be taken into account in the conventional pseudo-static based limit equilibrium analyses or Newmark's rigid sliding block analogy, which are usually adopted as the seismic design procedure. Therefore, this study attempts to develop a simpliˆed procedure to evaluate earthquake-induced residual displacement of GRS walls by re‰ecting the knowledge on the seismic behaviors of GRS walls obtained from the shaking table model tests. In the proposed method, 1) the deformation characteristics of subsoil and backˆll are modeled based on the model test results and 2) the eŠect of failure plane formation is considered by using residual soil strength after the failure plane formation while the peak soil strength is used before the failure plane formation, and 3) the eŠect of the pullout resistance mobilized by the reinforcement is also introduced by evaluating the pullout resistance based on the results from the pullout tests of the reinforcements. By using the proposed method, simulations were performed on the shaking table model test results conducted under a wide variety of testing conditions and good agreements between the calculated and measured displacements were observed.
منابع مشابه
Reducing the Forces Caused by Earthquake on Retaining Walls Using Granulated Rubber-Soil Mixture
In recent years, various studies have been undertaken on how to use waste materials in civil engineering projects. Among waste materials, waste rubber has been highlighted to be used for different purposes such as reinforcing of soil and making of reinforced slopes. To investigate the properties of granulated rubber-soil mixture and its application in making of slopes behind retaining walls, so...
متن کاملEvaluation of Geosynthetic Forces in GRSRW under Dynamic Condition
Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the increasing uses of geosynthetic reinforced soil systems in the regions, which bear frequent earthquakes, the study of dynamic behavior of structures seems necessary. Determining the reinforcement forces is; therefore, one of the most important and main points of discussions in designing retaining walls, b...
متن کاملSeismic Active Earth Pressure of Narrow Geosynthetic-Reinforced Backfill on Rigid Facing
In the narrow geosynthetic-reinforced retaining walls a stable rear wall exists in a short distance and so there is no enough space to extend appropriate length of reinforcements. In this case, the probability of overturning of retaining wall increases especially when subjected to earthquake loading. To increase the stability of the wall, reinforcements may be connected to the stable rear surfa...
متن کاملAdiMaulana, Koichiro Watanabe
Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the increasing uses of geosynthetic reinforced soil systems in the regions, which bear frequent earthquakes, the study of dynamic behavior of structures seems necessary. Determining the reinforcement forces is; therefore, one of the most important and main points of discussions in designing retaining walls, b...
متن کاملFrequency Response Analysis of Reinforced- Soil Retaining Walls with Polymeric Strips
Few studies have been conducted on polymeric strip and the behavior of soil retaining walls. This paper will present the effect of frequency on the dynamic behavior of reinforced soil retaining walls with polymeric strips. The frequency content describes how the amplitude of a ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will stro...
متن کامل